The $4^{\text {th }}$-order Runge-Kutta method

1. Use four steps of the $4^{\text {th }}$-order Runge-Kutta method to approximate a solution on the interval $[0,1]$ to the initial-value problem defined by

$$
\begin{aligned}
y^{(1)}(t) & =-y(t)+t-2 \\
y(0) & =1
\end{aligned}
$$

Answer: 1.0, $0.365234375,-0.07382869720,-0.3604769395,-0.52842320234$
2. Use eight steps of the $4^{\text {th }}$-order Runge-Kutta method to approximate a solution on the interval $[0,1]$ to the initial-value problem defined that shown in Question 1.

Answer: To ten digits of significance, $1,0.6549886068,0.3652048910,0.1241594432,-0.0738746219$, $-0.2339512641,-0.3605305889,-0.4575486265,-0.5284789123$.
3. If the actual solution is $y(t)=4 e^{-t}+t-3$, argue that this method is indeed $\mathrm{O}\left(h^{5}\right)$ for a single step.

Answer: To four significant digits, the error of the approximation of $y(0.25)$ in Question 1 is 0.00003124 and the error of the approximation of $y(0.125)$ in Question 2 is 0.0000009964 , and this second value is approximately one $32^{\text {nd }}$ the error of the first.
4. If the actual solution is $y(t)=4 e^{-t}+t-3$, argue that this method is indeed $\mathrm{O}\left(h^{4}\right)$ over multiple steps.

Answer: $y(1)=4 e^{-1}+1-3 \approx-0.5284822353142307136$, so the error of the approximation in Question 1 is approximately 0.00005903 while the error with the second approximation is 0.000003323 , which is approximately one sixteenth that of the previous approximation.

